Aurora: A Foundation Model for the Earth System

Wessel Bruinsma

Microsoft Research Al for Science

Building a Dutch Al-Earth System Modeling Community KNMI, De Bilt, 29 Jan 2025

The Aurora Team

Paris Perdikaris
University of Pennsylvania,
formerly MSR

Wessel Bruinsma
MSR

Megan Stanley
MSR

Ana Lučić
University of Amsterdam, formerly MSR

Cristian Bodnar Silurian, formerly MSR

Richard Turner
University of Cambridge,
formerly MSR

Anna Vaughan
University of Cambridge

Johannes Brandstetter

JKU Linz, NXAI, formerly MSR

Patrick Garvan
Formerly MSR

Maik Riechert
MSR

Max Welling
University of Amsterdam,
CuspAl, formerly MSR

Elizabeth Heider Book tour, formerly MSR

The Al Revolution in Science

The Al Revolution in Weather Forecasting

2018

First serious efforts to compare Al models to physics baselines

Dueben and Bauer (2018)

2019

Al models skillful to multiple days Weyn et al. (2019)

2020

WeatherBench starts to drive ML development

Rasp et al. (2018)

The Al Revolution in Weather Forecasting

2022

GNN outperforms GFS at 1° Keisler (2022)

2022

Pangu-Weather outperforms HRES at 0.25° Bi et al. (2023)

The Al Revolution in Weather Forecasting

2022-2023

Tech companies start to work in this space

2023

GenCast outperforms IFS ensemble Price et al. (2024)

2024

ECMWF launches AIFS

What About Other Forecasting Tasks?

- Current models are impressive, but limited to one setting.
- Unified approach?

Aurora

pretraining

- Train a single neural network a large body of Earth system data
- Learn general-purpose representation of dynamics that govern atmospheric and oceanic flow
- Slow and data hungry

- Leverage learned representation to efficiently adapt to new domains!
- Fast and data efficient

Aurora: a foundation model for the Earth system

AuroraFine-Tuning Applications

Tropical cyclone track

High-resolution weather

Aurora

Air Pollution Forecasting

- Setup: model levels of PM₁, PM_{2.5}, PM₁₀, CO, NO, NO₂, SO₂, O₃
- Data: Copernicus Atmospheric Monitoring Service (CAMS) analysis
- Baseline: CAMS forecasts

Coupled to IFS, ~10x more expensive:

~16 node-hours per hour lead time!

Aurora: ~0.5 s per hour lead time

Aurora

Air Pollution Forecasting (2)

- Heterogeneous and spikey
- Anthropogenic factors
- Scarce
- Non-stationary

Overall:

Competitive on 95% (≤ 20% RMSE)

Better on 75%

Three days:

Competitive on 100% (≤ 20% RMSE)

Better on 86%

Conclusion

- Medium-term weather forecasting has seen incredible progress
- Pretraining-fine-tuning paradigm to extend these advancements to other domains
- Aurora only scratches the surface!

